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We report on the phenomenon of Anderson-type localization of walking solitons in optical lattices with
random frequency modulation, manifested as dramatic enhancement of soliton trapping probability on lattice
inhomogeneities with the growth of the frequency fluctuation level. The localization process is strongly sen-
sitive to the lattice depth since in shallow lattices walking solitons experience random refraction and/or
multiple scattering in contrast to relatively deep lattices, where solitons are typically immobilized in the
vicinity of local minimums of modulation frequency.
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The concept of Anderson localization was introduced in
the field of solid-state physics for the phenomenon of
disorder-induced metal-insulator transition in electronic sys-
tems. Anderson localization refers to the situation where
electrons, when released in a random medium, may stay
close to the initial point �1�. The mechanism behind this
property has been attributed to multiple scattering of elec-
trons by the random potentials, a feature of the wave nature
of electrons. The localization concept may be applied to the
classical linear wave systems as well �2�. However the chal-
lenging problem is the exploration of the nonlinear analogs
of Anderson localization. The interplay between disorder and
nonlinearity was recently studied in the systems described by
one-dimensional nonlinear Schrödinger equation with
random-point impurities �3,4�, in discrete waveguide arrays
�5,6�, and in globular protein �7�. Recently, the concept of
nonlinear optical lattices has attracted steady attention in
both nonlinear optics and matter waves fields. It was demon-
strated that periodic lattices are capable to support stable
solitons, whose properties can be tuned continuously from
that typical for solitons in uniform nonlinear medium to
those representative for solitons in discrete systems by
changing the strength of the optical lattice �8–11�. The tun-
ability of optical lattice proved to be very promising for soli-
ton management, including radiative switching and paramet-
ric steering �12–15�. It is worth noticing that mathematically
analogous problems appear in the theory of Bose-Einstein
condensates �16–18�. However, up to date theoretical studies
of soliton propagation in optical lattices were restricted
mainly to the case of regular, perfectly periodic lattices.

In this paper we demonstrate the existence of a nonlinear
analog of Anderson localization for walking solitons in opti-
cal lattices with random frequency modulation. We show that
with the growth of frequency fluctuations the multiple-
scattering scenario gradually replaces the random-refraction
one and finally the probability of soliton trapping grows dra-
matically. In terms of solid-state physics this might be inter-
preted as smooth phase transition between soliton conductor
and soliton insulator. Disorder-induced soliton localization
depends strongly on the depth of the lattice and can be tuned.

The generic equation describing the evolution of optical
�matter� wave packets in the presence of Kerr �mean field
cubic� nonlinearity and a periodic potential induced by a

weak optical lattice is the nonlinear Schrödinger equation
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In the optical context q is the dimensionless amplitude of
light field; the longitudinal and transverse coordinates � ,�
are scaled to the diffraction length and the input beam width,
respectively. The waveguiding parameter p is proportional to
the depth of refractive index modulation, while the random
function R��� stands for the transverse profile of refractive
index. We assume that the depth of refractive index modula-
tion is small compared to the unperturbed index and is of the
order of nonlinear contribution to refractive index due to the
Kerr effect. In the particular case of optical lattice induction
in photorefractive SBN crystal �electro-optic coefficient r
=1.8�10−10 m/V, linear refractive index n0=2.33� biased
with dc static electric field E0�105 V/m, for laser beams
with width 10 �m at wavelength �=0.63 �m the propaga-
tion distance �=1 corresponds to 0.6 mm of actual crystal
length, while dimensionless amplitude q�1 corresponds to
real peak intensities about 50 mW/cm2. Notice that at high
levels of the uniform background illumination nonlinearity
saturation intrinsic for the photorefractive medium can be
reduced substantially, and under this condition Eq. �1� can be
readily applied to study general soliton properties.

In the matter waves context Eq. �1� describes dynamics of
a one-dimensional Bose-Einstein condensate confined in an
optical lattice generated by means of a standing laser wave of
wavelength �. Now q stands for wave function, variable �
stands for time in units of �=2m�2 /�h, with m being the
mass of the atoms and h the Planck’s constant, � is the
longitudinal coordinate along the axis of the quasi-one-
dimensional condensate expressed in units of ��−1. For typi-
cal experiments � ranges from 0.8 to 3.2 �m. Parameter p is
proportional to lattice depth E0 expressed in units of the re-
coil energy Erec=h2 /2m�2. The lattice depths p�10 were
already achieved experimentally �16�.

Equation �1� admits several conserved quantities, includ-
ing the total energy flow U=�−	

	 �q�2d�.
Further we consider lattices with random frequency

modulation �FM� whose profile is described by the function
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R���=cos�
��, where 
���= �1+������
0 ,
0 is the carry-
ing frequency, ���� is a random process with the Gaussian
statistics at fixed �, zero mean value ��	=0, and unit vari-
ance ��2	=1 �angular brackets stand for the statistical
averaging�. Parameter � defines the depth of random fre-
quency modulation. The correlation function ����1����2�	
=exp�−��1−�2�2 /Lcor

2 � is assumed to be Gaussian with the
correlation length Lcor2� /
0. The model addressed here is
relevant both in the context of optically induced lattices,
where certain level of frequency fluctuations is inevitable
due to imperfections of lattice-forming waves, and in the
context of preformed waveguide arrays, where fluctuations
appear upon fabrication. Notice that optically induced lat-
tices with fluctuating spatial frequency actually distort upon
evolution, but the rate of distortion decreases dramatically
with the growth of the correlation length.

When tilted soliton q�� ,�=0�=� sech����exp�i�0��
��0 is the input angle and � is the form factor� is launched
into a regular lattice, it propagates across it provided
that �0�cr where the critical angle is given by �cr
=2�p��
0 /2�� / sinh��
0 /2���1/2 �12�. If the correlation
length is large enough �rather slow frequency modulation�,
then this equation can be applied to FM lattice as well, if one
replaces carrying frequency 
0 with instantaneous one 
���.
The critical angle can be considered as a random function of
� that acquires maximal values in minima of 
���. The
walking soliton might then be trapped in the vicinity of a
minimum of the instantaneous frequency �potential hole�
or scattered by a potential barrier-type inhomogeneity.
When the input angle greatly exceeds the critical one, the
instantaneous tilt angle is given by ��� ,��
�0�1
− ��cr

2 ��� /2�0
2�sin2��0
���� /2��. In this case the probability

of soliton scattering or trapping is negligible and it follows a
slightly perturbed linear trajectory �the random-refraction
scenario�. Notice also that radiation, which unavoidably ap-
pears when soliton crosses lattice channels, can be neglected
if the instantaneous propagation angle is far from the Bragg
one ���B=
0 /2 and the carrying spatial frequency is high
enough 
0��−1.

In numerical simulations we used the Monte-Carlo ap-
proach and integrated Eq. �1� with the split-step Fourier
method up to the distance L=102 for different sets of
computer generated random realizations of lattice profiles
Rk��� , k=1,… ,N. We calculated the trajectories of the
integral soliton center �k���=U−1�−	

	 ��q�� ,���2d� as
well as path-averaged soliton center displacement �k

av

=L−1�−	
	 �k���d� and its squared deviation Sk

av

=L−1�−	
	 ��k���−�k

av�2d�. Statistical averaging ��	 , �S	 of
these parameters �normalized by their values in the regular
lattice �0=�0L /2 and S0=�0

2L2 /12� provides information
about soliton localization. Key variables are the parameter p
that tunes lattice properties and the deviation of spatial fre-
quency fluctuations that defines the disorder level. The cor-
relation length was set to Lcor=2 to establish a smooth varia-
tion of the instantaneous frequency and statistical averaging
was carried out over N=103 realizations of lattice profiles.

First we analyzed an impact of lattice depth on soliton
localization at moderate disorder level ��0.1. In shallow
randomly modulated lattices with p�0.1 soliton follows

slightly perturbed linear trajectory since condition �0
�cr��� holds. However, with the growth of lattice depth
�up to p�0.4� some of the lattice inhomogeneities become
strong enough to cause single or multiple acts of scattering
�Fig. 1�a��. The physics behind this process differs substan-
tially from well-studied case of scattering by point defects
�19�. Thus, we found empirically that scattering occurs in the
region with almost linear modulation of instantaneous fre-
quency where R���
cos�
0�+�
0�2�, and � characterizes
the rate of the local frequency chirp. Considering interaction
of incident and reflected spectral soliton components
q�� ,��=ai���exp�ik��+ar���exp�−ik�� we get the system of
equations for complex amplitudes ai,r

i
dai

d�
=

1

2
k2ai − 2p�Rk�0�ai + Rk�2k�ar� ,

i
dar

d�
=

1

2
k2ar − 2p�Rk�0�ar + Rk�− 2k�ai� , �2�

where Rk�k�= �4/��
0�1/2cos��
0
2+k2� /4�
0−� /4� is the

spatial spectrum of lattice with linear chirp. Strictly speaking
Eq. �2� describes the interaction of slant planar waves �or
Fourier components of wave packet� under the conditions of
Bragg resonance k=� /
���, but it also could be applied for
qualitative examination of narrow-band wave packet reflec-
tion. Analysis of Eq. �2� shows that the energy exchange
distance between the incident and reflected waves is given by
Le=� / �2p�Rk�2k���, and that �Rk�2k�� has a notable flat maxi-
mum in the vicinity k
0 provided that �=
0���1+4m��−1

for m=0,1,2,…,. The full width of this flat reflection band is
given by �k=2�2��
0�1/2. All spectral soliton components
belonging to this band will be reflected synchronously on �
and soliton will retain its shape upon scattering. Notice that
the distance Le diminishes with growth of p, so that the prob-
ability of soliton scattering by linearly chirped lattice frag-
ments increases with p as well. This phenomenon is entirely
analogous to optical pulse reflection by linearly chirped
Bragg grating.

With further growth of the lattice depth the scenario of
random soliton trapping becomes dominant �Fig. 1�b��. For
the relatively deep lattices with p�1, the soliton is usually
immobilized in a close proximity of the launching point,
while typical transverse displacement is of the order of
correlation length. Soliton is typically trapped in the instan-

FIG. 1. �Color online� Scenarios of moving soliton localization
in lattices with random frequency modulation. �a� Scattering by
lattice impurity at p=0.4. �b� Trapping by lattice impurity at p
=0.8. In both cases 
0=8, �0=0.2, and Lcor=2.
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taneous lattice frequency minimum. In this region R���

cos�
0�+�
0�3�, where �0 characterizes the rate
of quadratic FM, and the lattice spectrum is given by
Rk�k�= �3�
0�−1/2�Ai��3�
0�−1/3�
0+k��+Ai��3�
0�−1/3�
0
−k��� /2, where Ai is the Airy function. Considering symmet-
ric pairs of plane waves �ai=ar� in Eq. �2� one gets the dis-
persion relation b�k�=−k2 /2+2p�Rk�0�+Rk�2k�� for propa-
gation constant b�k�. It is straightforward to show that the
regime of normal wave diffraction is replaced by the regime
of anomalous diffraction for d2b /dk2�0 that occurs for the
broad range of spatial frequencies k� �−
0 ,
0� as soon as
lattice depth exceeds the critical value p pcr
= �8
0�3�
0�−3/2Ai��3�
0�−1/3��−1. Physically, this means
that in the area of instantaneous frequency minimum the
Bragg-type guiding channel is formed where soliton can be
captured. The probability of soliton trapping then greatly in-
creases as p→pcr. Notice, that mixed localization scenarios
�i.e., soliton scattering followed by its trapping� are also pos-
sible.

Figures 2�a� and 2�b� show histograms of the path-
averaged soliton center displacement and its squared devia-
tion. Such histograms provide us with the number of lattice
profile realizations Nc�N corresponding to the situation
when �k

av/�0 or Sk
av/S0 fall into fixed intervals. On the basis

of Figs. 2�a� and 2�b� one can draw the conclusion about key
features of the probability density functions of �k

av and Sk
av.

For instance, the histogram of �k
av/�0 is asymmetric, its

maximum corresponds to the most probable value of path-
averaged soliton center displacement, and its width gives the
information about the localization area. The Sk

av/S0 histogram
provides information about the fraction of trajectories that
differ remarkably from linear ones.

The impact of lattice depth on statistically averaged soli-
ton center displacement ��	 and its squared deviation �S	 is
illustrated in Figs. 3�a� and 3�b�. Both ��	 and �S	 decrease
monotonically with the growth of the waveguiding param-
eter, but the slope of both dependencies drops off remarkably
in the vicinity of p
0.25. Careful analysis of propagation
dynamics shows that it is around this value of p the multiple-
scattering scenario is gradually replaced with the trapping
one. Therefore, an increase in the lattice depth leads to the
qualitative modification of stochastic soliton dynamics. No-
tice that the variance of ��	 also reaches its maximum value
in the vicinity of the point p
0.25 where qualitative change
of propagation dynamics occurs.

Figures 3�c� and 3�d� show dependencies of ��	 and �S	
on the standard deviation of frequency fluctuations. Besides

the soliton localization enhancement with growth of the dis-
order level, one should point out negligible localization prob-
ability at low fluctuation levels �for ��10−2 at p=1�. With
an increase of the disorder level beyond this critical value the
localization probability growths dramatically, and the
random-refraction scenario is rapidly replaced with the
multiple-scattering one. In the strong disorder limit ��
0

1� the width of the localization area saturates at the level
of a few correlation lengths and the center of this area is
displaced in the direction of launching point. The phenom-
enon of the rapid growth of soliton localization probability in
nonlinear optical lattices with an increase of the disorder
level that we uncover here is reminiscent to the phenomenon
of Anderson localization in linear wave systems �2�, and
might be interpreted as a smooth phase transition between
soliton-conducting and soliton-insulating lattice states. Fi-
nally, to stress qualitative changes in the soliton behavior
with the growth of the lattice depth and disorder level,
we have plotted derivatives dp=�0

−1� ��	 /�p and d�

=�0
−1� ��	 /�� versus p and � in Figs. 4�a� and 4�b�, respec-

tively. It is clear that the localization process is very sensitive
to small variations in the waveguiding parameter in the vi-
cinity of point p
0.1 �Fig. 4�a�� and to variations in stan-

FIG. 2. �Color online� Histograms of path-averaged soliton cen-
ter displacement �a� and its squared deviation �b� at �=0.1, p=0.8,

0=8, �0=0.2, and Lcor=2.

FIG. 3. Averaged soliton center displacement �a� and its squared
deviation �b� versus waveguiding parameter at �=0.1. Averaged
soliton center displacement �c� and its squared deviation �d� versus
standard deviation of frequency fluctuations at p=1. In all cases

0=8, �0=0.2, and Lcor=2.

FIG. 4. �a� Derivative dp versus waveguiding parameter at �
=0.1. �b� Derivative d� versus standard deviation of frequency fluc-
tuations at p=1. In all cases 
0=8, �0=0.2, and Lcor=2.
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dard deviation of frequency fluctuations in the vicinity of
�
0.012 �Fig. 4�b��.

To conclude, we have exposed the phenomenon of
Anderson-type localization of walking spatial solitons in op-
tical lattices with the random frequency modulation and en-
countered dramatic suppression of the localization effect at
low fluctuation levels. We showed that the localization pro-
cess is strongly sensitive to the lattice depth since in shallow

lattices moving solitons experience random refraction or/and
scattering on the lattice inhomogeneities in contrast to deep
lattices, where solitons are typically trapped. The estimates
for parameter range where these propagation scenarios occur
are given.
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